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In 1974, Falk and Thomas did a computer simulation of Flory's Equireactive 
RA: Polymer model, rings forbidden and rings allowed. Asymptotically, the 
Rings Forbidden model tended to Stockmayer's RA: distribution (in which the 
sol distribution "sticks" after gelation), while the Rings Allowed model tended 
to the Flory version of the RA: distribution. In 1965, Whittle introduced the 
Tree and Pseudomultigraph models. We show that these random graphs 
generalize the Falk and Thomas models by incorporating first-shell substitution 
effects. Moreover, asymptotically the Tree model displays postgelation 
"sticking." Hence this phenomenon results from the absence of rings and occurs 
independently of equireactivity. We also show that the Pseudomultigraph model 
is asymptotically identical to the Branching Process model introduced by 
Gordon in 1962. This provides a possible basis for the Branching Process model 
in standard statistical mechanics. 

KEY WORDS:  RA:; polymer; rings allowed and forbidden; branching 
processes; random graphs. 

1. INTRODUCTION 

Flory's ~1) RA: model is the best-known model of chemical polymerization. In 
this model, each monomer has f functional groups of type A. The A's react 
with one another to bind the monomers together (see Fig. la). Making two 
assumptions: 

1. intramolecular reaction does not occur, and 
2. subject to (1), any pair of A's is equally likely to react (the Principle 

of Equireactivity), 
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Flory (2-4) showed that an infinite polymer (or gel) formed only when f >  3 
and 

a ~  a ~ = ( f - - 1 ) - '  (I) 

a, the extent of reaction, is the probability that a random A group has 
reacted; a~ is its critical value. 

Stockmayer ~5) showed that the weight fraction of n-mers (i.e., the 
proportion of monomers in polymers of size n) is 

f ( f n  - n)! a " - ' ( l  - a) In-2"+2 
w, = n (fn ~ ~-n ~_-~) ! n[ (2) 

Stockmayer's derivation (using a statistical mechanical microcanonical 
ensemble) implied that Eq. (2) holds only for a < a c and that for a > %, the 
n-mer distribution "sticks," i.e., the weight fractions maintain the same 
proportions to each other as they had at a = a~, but their total decreases, 
implying a net loss of sol (finite polymer) to the gel. 

Flory (6) disputed this interpretation and said that Eq. (2) held for all a. 
Because ~ w n < 1 for a > ac, the sol again loses mass to the gel, but the 
Flory gel mass differs from the mass predicted by Stockmayer. 

Falk and Thomas ~7) did a computer simulation to clarify the 
assumptions underlying the Flory and Stockmayer interpretations (see 
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Fig. 1. Figure la  shows two RA 4 monomers  reacting to form a dimer. Figure lb shows the 
same situation for the Flory A 3RB Model. The AIRBg model is like the RA s model except 
each monomer has f A's  and g B's, and A's  react only with B's and vice versa. 
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Fig. 2. Figure 2 shows the two Falk and Thomas simulations. To accord with classical 
statistics (in which monomers and functional groups, though chemically identical, are 
distinguishable), the monomers (R) and functional groups (A) on each monomer have been 
given a distinguishing subscript, Figure 2a shows the Rings Allowed model, in which 
intramolecular reaction is permitted; Fig. 2b shows the Rings Forbidden model, in which 
intramolecular reaction is forbidden. 

Fig. 2). In the Rings Forbidden model, N R A  I monomers were bonded by 
joining pairs of A's stepwise at random, and those bonds resulting in 
intramolecular reaction were rejected. As N-~ oo, the polymer distribution 
conformed to Stockmayer's interpretation. Donoghue and Gibbs (8-~~ later 
confirmed the asymptotic result analytically. 

In the Rings Allowed model, Falk and Thomas duplicated the above 
simulation, except that intramolecular reaction was not rejected. As N - ,  oo, 
the polymer distribution conformed to Flory's interpretation. Asymptotically, 
only the gel contained rings because two A's in a finite polymer have an 
infinitesimal chance of reacting. Donoghue (~') later confirmed Flory's gel 
statistics by duplicating this simulation. I (~2) have since verified these results 
analytically. 

My verification used techniques from Whittle's (13-1s) results on random 
pseudomultigraphs (see Fig. 3 for terminology from Harary 's  (~9) book on 
graph theory). Whittle's model is equivalent to the following scheme 
(Spouge(am): consider N-pseudomultigraphs (i.e., pseudomultigraphs on N 
vertices). ~' Without further reference, any graph is labeled, ordered, and 
possibly unconnected unless otherwise mentioned. Assign a weight Ua to an 
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Fig. 3. Figure 3 shows Whittle's Pseudomultigraph (Fig. 3a) and Tree (Fig. 3b) models. The 
realizations shown correspond to the Falk and Thomas realizations in Fig. 2 for the 
equireactive {Hi} of Eq. (6). 

General Terminology: (We use the term "graph" to denote any graphical object, e.g., 
tree or pseudomultigraph.) The vertices of the graphs are circles, numbered to show that the 
graphs are labeled. Edges (which we shall call bonds to emphasize the chemical application) 
join the vertices. The half-edges are numbered near each vertex to show that the graphs are 
ordered. The graphs in Fig. 3 are undirected; the graphs would be directed if every bond had 
an arrow to indicate its directedness. (This would be like the directedness of an A-B bond in 
the AfRBg model of Fig. lb.) 

Graphical Partition: The degree of a vertex is the number of bonds emanating from it 
(e.g., the degrees of vertices 2 and 3 in Fig. 3a are 4 and 3). We use Hj as a marker-variable 
for a vertex of degreej .  The product H~H~H4 is a list of vertex degrees in Fig. 3a; this is the 
partition of Fig. 3a. The partition of Fig. 3b is HoH~H2H 3. 

Components: In both Figs. 3a and 3b, vertices 1-5 form a component because they are 
eonneeted. The singleton vertices 6 are also components. 

Pseudomultigraphs are graphs which may have loops (e.g., like that bonding vertex 6 to 
itself in Fig. 3a), multiple bonds (e.g., like those joining vertices 1 and 2 in Fig. 3a), or cycles 
(e.g., like those formed by bonds joining vertices 3-5 in Fig. 3a). Fig. 3b might be considered 
a special type of pseudomultigraph lacking these features. 

Conventions in This Paper: All graphs in this paper are labeled, ordered, and 
undirected. Unless otherwise specified, pseudomultigraphs may be unconnected. A graph with 
k vertices is called a k-graph, e.g., k-component, k-pseudomultigraph. 

Trees: The components of Fig. 3b have no loops, multiple bonds, or cycles. They are 
therefore trees. Note that a k-tree has ( k -  1) bonds. Fig. 3b is a collection of trees, also 
called a forest. 

Consider the 5-tree in Fig. 3b. Choosing a vertex, e.g., vertex 3, to be the root makes it a 
rooted tree. Likewise, choosing a bond, e.g., the bond between vertices 1 and 3, to be the root- 
bond makes it a bond-rooted tree. Splitting the root-bond in half then divides the bond-rooted 
tree into 2 link-trees. Consider the link-tree consisting of vertices 3-5. The half-edge 1 of 
vertex 3 is the link and vertex 3 is the link-vertex. 
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N-pseudomultigraph G as follows (see Fig. 3a): if G has partition ]-I H~i and 
B bonds 

uG = lq  (3) 

where {Hi} and fl are preassigned non-negative numbers. We select G from 
N-pseudomultigraphs with probability 

P(G) = U~/ (~a) U6 = U6/U i (4) 

where U N is the sum of the weights of all N-pseudomultigraphs. 
In Eq. (3), {nj.} satisfy the following constraints: 

~ n] = N (5a) 
j = 0  

co 

~" jn i = 2B (5b) 
j - 0  

so that fib in Eq. (3) could be absorbed into I~ H~J by rescaling tHj}. It is 
useful, however, to regard {Hi} as entropy factors intrinsic to the vertices, 
and fl as an energy factor controlling the extent of bonding within the 
pseudomultigraphs. 

Whittle's Tree model is similarly constructed (see Fig. 3b) except that 
the components of the graph are trees rather than connected 
pseudomultigraphs. Weights are assigned as in Eqs. (3) and (4) and 
constraints (5a) and (5b) continue to hold. 

Comparis of Figs. 2 and 3 shows that the Falk and Thomas models are 
equivalent to Whittle's models when 

f~ 
__Hi -- fi ( f  _j)! , j = 0 ,  1,2 ..... f 

= 0 otherwise (6) 

if the number of bonds is fixed at 

B = ~ - N  (7) 

(This is the number of bonds in Fig. 2 if the extent of reaction there is a.) 
The value of Hj is equivalent to selecting j of t h e f A ' s  on a monomer. The 
ordering in Whittle's models then corresponds to a unique realization in the 

822/38/3 -4-10 
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Falk and Thomas models. (Compare, e.g., Figs. 2 and 3) If U N and G in 
Eq. (4) are restricted to graphs on N vertices with B bonds, with B given by 
Eq. (7), Eq. (4) gives the probabilities corresponding to the Falk and 
Thomas models. 

The fixed bond version [Eq. (7)] of Whittle's models is introduced to 
indicate a connection between these models and standard polymer chemistry 
models. Having done this, we now consider only those Whittle models that 
use fl instead o f  B. Such models (Pseudomultigraph and Tree), described 
near Eqs. (3)-(5), are random graphs on a fixed number of vertices that 
allow the bonding (B) to vary. 

From the discussion of Eqs. (6) and (7), the Rings Allowed model and 
the Pseudomultigraph model are equivalent in the equireactive case. The 
Equireactive Pseudomultigraph model [Eq. (6)] obviously generalizes 
(general Hi), while the Rings Allowed model finds an asymptotic 
generalization in the Branching Process model of Gordon (22) and Good. (23) 
Gordon introduced this model to account for the First Shell Substitution 
Effect [see, e.g., Gordon and Ross-Murphy(24)]: due to steric effects, the 
bonding of an A is influenced by the bonding of other A's on the same unit. 
One might well expect the Pseudomultigraph model with general Hj to be 
asymptotically equivalent to the Branching Process model. 

We also know that the Equireactive Tree model [Eq. (6)] is equivalent 
to the Rings Forbidden model. In turn, the latter is asymptotically equivalent 
to the Stockmayer RAy model in which the sol distribution "sticks" after 
gelation. One might expect the general Tree model to "stick" after gelation 
as well. 

Before showing these expectations to be correct, we require some 
standard results which follow. 

2. GRAPHICAL PRELIMINARIES 

The first thing we require is an efficient enumeration of ordered, labeled 
trees by partition. To this end we introduce 

I-I(y) = ~ Hjy" (8) 
j 0 

where Hj is the weight assigned to a vertex of degreej. For this section only, 
/~=1.  

Let l k be the sum of the weights of ordered, labeled link k-trees (see 
Fig. 3) when fl = 1. Then 

I k =  ~ j H j  kl  ! ... _ j=x k2! kj 1 ! Ikllk2 "'" lkj-~ (9) 



Polymers and Random Graphs 579 

where the second sum is over all solutions of 

kl + k2 + . . .+  k~_l = k - 1 (10) 

where {ki} are positive integers. The proof: any link tree has a link-vertex of 
degree j(Hj) which gives rise to ( j -  1) link trees. Because of ordering, there 
are j choices for the link and the ( j - 1 )  link-trees are distinguishable. 
Because of labeling, the ( k -  1) vertices on the link-trees must be allocated 
(also there are k possible labels for the link-vertex), hence the multinomial 
coefficient after the second sum. 

Equations (9) and (10) imply 

(2x ) j-1 y~=L(x) z~ Ik--~. = jH jx  lk-~. = x H ' L ( x ) = x H ' ( y )  (11) 
k = l  �9 j = l  1 �9 

(~ denotes a definition.) 
If t k is the sum of the weights of ordered, labeled k-trees, then the 

corresponding sum for rooted trees is kt k, since every k-tree can be rooted on 
any of its k vertices. The generating function for rooted trees, 

R(x)  ~= = x H~y j = xH(y)  (12) 
k = l  �9 j = 0  

since every rooted tree consists of a root (x) of degree j(Hj) attached to j 
link-trees (yJ). A cautious reader can verify Eq. (12) through a recursion 
similar to Eq. (9). 

Likewise, the generating function for trees, 

X k 1 2 
T(x)~= Z t k - ~ . = x H ( y ) - - - ~ y  (13) 

k = l  

Equation (13) is formally verified by dividing Eq. (12) by x and integrating. 
Integrating H(y)  by parts and applying E q . ( l l )  yields Eq.(13).  
Equation (13) also has a combinatoric interpretation: xH(y)  is the 
generating function for rooted trees (ktk) while �89 y2 is the generating function 
for bond-rooted trees, since each bond-rooted tree is essentially an unordered 
pair of link-trees. The weight of bond-rooted k-trees is (k - 1) t k since a tree 
can be bond-rooted on any of its bonds. T(x) is the difference of these two 
generating functions since t k = kt k - (k - 1) t k. 

Gordon's Branching Process model is similar to the enumeration of tree 
weights. For ease of comparison, the presentation given here is a graph 
theoretic one, although replacement of graph-theoretic terms (e.g., 
"monomer" instead of "vertex") allows a chemical interpretation. In the 
model, there are an infinite number of vertices, pj is the probability that a 
random vertex is of degree j. The vertices are bonded into trees "at random" 
[a notion defined after Eq. (15)]. 
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Let 

P(x) A= ~ p]x ] (14) 
] ' - 0  

If 2 k is the probability that a link-tree has k vertices, then 
09 

~'k=]~_ /P(I) ~ 2k ~,k=... ~,k,_l (15) 

where the second sum ranges over the set of values given in Eq. (10). 

ProoL The probability that a link leads to a vertex of degreej  is the 
a priori probability (p]) times the vertex degree (j) (a vertex of high degree 
is more likely to be at the end of a "random' link). Division by P ' (1)  = ~jpj 
normalizes jp] into a probability. The second sum gives the probability that 
the ( j -  1) link-trees from the link-vertex have (k - 1) vertices between them 
[see Eq. (10)]. Equation (15) implies 

m p,(t/) (16) t/zx__  :IZ & = x ?'(1) 

Let w k (the weight-fraction in chemical terminology) be the proportion 
of vertices in trees with k vertices. Then 

W(x) A= ~ wkxk=x ~ pjt/J=xP(t/) (17) 
k = l  j = 0  

Proof. The vertex (x) has degree j(pj) and gives rise to j link-trees 
(t/J); cf. Eq. (12). 

Gordon et al. (25) give a rigorous derivation of Eqs. (15)-(17). These 
equations complete our preliminaries. The next section proves the asymptotic 
equivalence of Whittle's Pseudomultigraph model to Gordon's Branching 
Process model. 

3. THE PSEUDOMULTIGRAPH MODEL 

Consider the Pseudomultigraph model (Fig. 3a) on N vertices with 
variable bond number; weights are given by Eq. (3). The sum of the weights 
of pseudomultigraphs with B bonds and partition I ]  H~.J is 

l IF[ H~j I N, (2B)! UNS - 1 ] n j !  2"B! I]H}"/~" (18) 

where {nj} satisfy Eqs. (5). 
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ProoL Label the vertices 1, 2,..., N. Assign a degree to each vertex 
(N!/I ~ nj!). If vertex 1 has degree j ,  make j  copies of 1, i.e.: 11, 12,..., 1 s, to 
represent half-edge ordering. There are now 2B numbers. Permute them 
[(2B)!] and pair the numbers, starting from the beginning of the sequence 
[i.e., pair position (2k - 1) with 2k, k = 1, 2,..., B ]. Join the 
pseudomultigraph half-edges in accordance with the sequence pairing. This 
overcounts the distinct pseudomultigraphs by a factor 2BB! since the order 
within number-pairs is immaterial (28 ) as is the order of the pairs themselves 
(B!). The remaining factors of Eq. (17) give the weight of any one of the 
pseudomultigraphs. 

The (2B)th moment of the standard normal distribution is 

1 fco (19) (2~)  '/2 -o~ e x~/ix2" dx = (2B)!2~B! 

Substitution in Eq. (18) followed by summation over all {nj} satisfying 
Eq. (5b) shows that 

U~v= ~ UNB tI~ H~Sf - 
1 

I e x2/2HU(x X/fl)dx 
co 

(Dr) 1/2 
(Z n j=N) co 

_ 1 e x2/2eHN(x) dx (20) 
(2~/~) ~/2 _co 

Set 
We are interested in U N as N--* oo. 

fl = (bN) -~ (21) 

Scaling fl this way (with b constant) maintains the average number of bonds 
per vertex constant (as we shall demonstrate). Equation (21) makes U N an 
integral to which the saddle-point method applies [see, e.g., P61ya and 
Szeg6 (26), p. 96]. The essence of this method is that 

I ~  1 foo (2g) 1/2 -co g(x) exp Nf(x) dx ~ g(~)[-Nf ' ({)]-  1/2 exp Nf({) (22) 

where ~ is the value of x maximizing f (assumed unique) and ~ indicates 
that the ratio of the two sides approaches 1 as N ~  or. The heuristic for 
Eq. (22) is straightforward: expand f ( x )  in the integral in a Taylor series 
about x = ~ up to ( x -  ~)2, noting f ' ( ~ ) =  0. Extract the last two factors in 
Eq. (22) from the integral. The result is the expectation of gO(), where X is a 
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normally distributed random variable with expectation ~ and variance 
[-Nf"(~)] -~/z. As N--,oo, the distribution concentrates at ~, so 
E[g(X)] ~ g(~), the first factor in Eq. (22). 

With Eq. (21), the integral in Eq. (20) has the form of Eq. (22) with 

g(x) =~- ,n  

f (x)  = -�89 2 + In H(x) (23) 

If f (s) has a unique, positive maximum s, 

H'(s) 
f ' ( s )  = -bs  + ~ ~- 0 (24) t4(s) 

The hypothesis holds for many "physical" {Hi}, e.g., the equireactive ones in 
Eq. (6). The expected proportion of vertices of degreej is 

1 H~ euN I x eu~ 
PJ~N U N 8H~ U~ ~ ~H) 8Hi (25) 

Proof. Note Eq. (3) for Uo. HjSUG/SHj multiplies the weight U G by 
the number of vertices of degree j in G and 1IN normalizes this to a 
proportion. Because UN is the sum of the weights Ua, the factor 1/U~v 
normalizes the weights into probabilities, and Eq. (25) holds. Using 
Eqs. (20) and (25) yields 

Hj sj 
pj ~ - ~  as N ~  m (26) 

since 8UN/gHi multiplies the integrand of Eq. (20) by [N/H(x)] gH(x)/SHj = 
NxffH(x). Expressing Eq. (25) as a ratio of two integrals and applying the 
saddle-point formula Eq. (22) yields Eq. (26). Therefore 

o~ n(sx) 
P(X) ~ ~ pjx J H(s) as N-~ ~ (27) 

j=0  

where ~ indicates asymptotic equality of coefficients of x ), j = 0 ,  1 ..... 
Relating this to the Branching Process model requires an expression for w k 
Icf. Eq. (17)1, the expected proportion of vertices in connected k- 
pseudomultigraphs. If rnk(G ) is the number of k-components of G, 

kmk(G ) V~ k N! U~ k (28) 
w~ ~ ~ N U~ N ( N -  k)! k! ck Ux (G) 

where c~ is the sum of the weights of connected k-pseudomultigraphs (i.e., 
the analog of U N for connected pseudomultigraphs). 
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Proof of the Second Equality. Cancel the factor k/(NUN) from both 
sides. What remains on the left has a combinatoric interpretation: it is the 
total weight of constructing a pseudomultigraph on N vertices, then coloring 
one of its k-components black. This equals the weight of choosing k of the N 
vertices to be black, constructing the black k-component, then constructing a 
pseudomultigraph from the remaining ( N -  k) vertices. [It is also possible to 
give a formal proof of Eq. (28) by differentiating Eq. (36) with respect to 
Ck. ] 

Fix k and let N ~  oo. Since fl = (bN)-l,  b fixed, the terms of highest 
order in c k are those belonging to trees, since amongst the k-components 
these have the smallest number of bonds. Hence 

ck~tkflk 1 as N ~ o v  (29) 

where t k [as in Eqs. (11)-(13)] is the sum of the weights of k-trees for fl = 1 
and general {Hi}. Also 

UN-k H-k(s) as N ~  m (30) 
U~ 

since the integrals for Us_ k and U N are identical [Eq. (20)], except for an 
extra factor H-k(x)  in the U u k integrand. 

Therefore Eqs. (28)-(30) give 

ktk 
wk-b-;v-,[bH(s)] -k as U o o v  (31) 

Comparing this expression with Eqs. (11) and (12) shows 

W(x) A ~ WkX k ~ b  X H(y)  (32) k=, g g ( g  H(y )  = x H(~-~ 

where 

x H ' ( y )  
Y = bH(s----) H ' ( y )  = xs H'(s~ (33) 

the second equality following from Eq. (24). Comparison of Eqs. (27), (32), 
and (33) with Eqs. (16) and (17) (using the dummy variable y=s~l) 
demonstrates the asymptotic equivalence of the Pseudomultigraph model to 
the Branching Process model. 

We now examine the Tree model. 
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4. THE TREE MODEL 

This model is like the Pseudomultigraph model except that all graph 
components are trees. Tree weights are given by Eq. (29), which is now an 
exact, rather than asymptotic, equality. Comparison with Eqs. (11)-(13) 
shows 

x k 1 y2 (34) C(x) A= ~ ck ~. =fl- lT(xfl)= xH(y)--~-fl 
k = l  

where 
y = x ~ H ' ( y )  (35) 

If U s is the sum of weights for N-forests, Percus ~27), p. 52 (see also 
WhittlerS8)), shows 

xN ~ Ck(x) 
a(x) ~ U N ~  = 1 + k! = exp C(x) (36) 

N ~ O  " k = l  

Heuristic. Every forest decomposes into k trees and Ck(x) is the 
generating function for ordered k-tuples of trees, l/k! removes the ordering. 
[Comparing coefficients of x N on both sides of Eq. (36) gives a combinatoric 
proof.] 

Extracting the coefficient of x s from both sides of Eq. (36) by the 
Cauchy residue theorem yields 

U s _  1 (" expC(x) dx dx 
N! 27ci JF X N X 

(37) 

where F denotes integration around a contour take counterclockwise about 
the origin. Change variables as in Eq. (35): 

u s  _ ~__ f H ' ( y )  - y H " ( y )  ay (38) 
N! - 27ri r e x p N g ( y )  H ' ( y )  y 

where 

g(y )=b  yH(y) 1 y 2 + l n e H '  yj  R ( a (39) 
H'(y) 2 y 

H'(y)  -- yH"(y) 
g'(y) = [byH(y) - H'(y)]  yH,(y)2 

g'(y) has two roots: s, satisfying Eq. (24), and a, satisfying 

(40) 

H' (~r) = oH'(a) (41) 
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To apply the saddle-point method, deform the contour Y to pass 
through the minimum 4 of g(y) on the positive reals. Since F is perpendicular 
to the real axis at 4, I g(Y)[ takes a local maximum on Y at ~. Moreover, F 
can usually be further deformed to make the local maximum a global 
maximum. This can be done for the equireactive {Hj} of Eq. (6). 

The hypotheses in the remainder of this section apply to the 
equireactive {Hi} and to some other {Hi} as well. The remainder of this 
section is certainly false for Whittle's (is) "unchemical" Cosh model 
[H(x) = cosh x] because H1 = 0. It may also fail for some "chemical" {Hj} 
as well. In the remainder, " / f "  denotes a hypothesis, holding for equireactive 
{Hi}, requiring verification for general {Hi}. 

I f  H~ ~ 0 [so the integrand of Eq. (38) does not have an essential 
singularity at y = 0], and /f the real minimum 4 of g(y) is unique, the 
variable y in Eq. (38) may be transformed, y --- { + iu, to produce an integral 
to which the saddle-point method, Eq. (22), may be applied. If ~=  s, 
application is immediate. If ~ = a, the integrand of Eq. (38) zeroes at y = a; 
an integration by parts [one part being expNg(y) ,  g'(y)]  eliminates the 
zero to allow application. 

In either case, 

(N-k),/N, 
(42) 

since the integrands from Eq. (37) differ only by a factor of x k, given by 
Eq. (35). 

Substitution of Eqs. (42) and Eq. (29) (now exact) into Eq. (28) gives 

(43) 

Comparison with Eqs. (11) and (12) shows 

W(x) 5= ~ wkx k ~ b - -  H(y) (44) 
k = l  

where 

xr 
y=H,(~--ffH'(y) (45) 

For ~ = s [satisfying Eq. (24)], Eqs. (44) and (45) are identical to Eqs. (32) 
and (33), indicating identical (pre-gel) distributions for the Pseudomultigraph 
and Tree models (a result known to Whittlet15)). For ~=  a (postgel), the 



586 Spouge 

saddle-point condition Eq. (41) does not involve b. Eq. (44) then shows that 
the weight-fractions for the general Tree model "stick" as b changes. 

For the equireactive {Hi}, the positive real minimum ~ is either s or a, 
whichever critical point is the closer to the origin. As fl increases with N 
fixed (decreasing b and increasing the bonding), s moves away from the 
origin and ceases to be the relevant saddle-point when it crosses a at 
gelation. Donoghue ~~ demonstrates this behavior for the equireactive {Hi}, 
although we have now shown this behavior to be a more general 
phenomenon. 

5. DISCUSSION 

We have shown [despite my initial impression to the contrary, 
Spouge, ~28) Discussion and Summary] that Whittle's Tree and 
Pseudomultigraph models generalize the Falk and Thomas Rings Forbidden 
and Rings Allowed models, respectively, by incorporating first-shell 
substitution effects. 

The Tree model displays the postgel "sticking" found in the Stockmayer 
interpretation of Flory's RAy model, while the Pseudomultigraph model is 
asymptotically equivalent to Gordon's Branching Process model. 

The Pseudomultigraph model chosen (fixed vertex number N, variable 
bonding B regulated by an energy factor fl) is like a statistical mechanical 
canonical ensemble. It provides a standard statistical mechanical basis for 
the Branching Process model as a thermodynamic limit. 

In a rigorous canonical ensemble treatment, error estimates for saddle- 
point integrals [Eq. (22)] are required. For equireactive {Hi}, Watson's 
lemma ~29) will provide such error control for our integrals [Eqs. (20) and 
(38)]. A rigorous general analysis of our integrals is difficult because the 
behavior of relevant saddle-points can be quite diverse [cf. Whittle's tI5) Cosh 
model]. 

Grand canonical treatments often bypass such difficulties. This method 
fails for the Pseudomultigraph model because the grand partition function 
always diverges. (15) ]Multiply Eq. (20) by vN/N! and sum over N. The result 
diverges for all v.] 

Directed graphs provide a means for analysis of Flory's (1) AIRBg 
model (see Fig. lb), an object of recent interest [Spouge (3~ Van Dongen 
and Ernst(33)'(34)]. Generalization of this paper to directedness and to 
multiple particle types is possible. In this respect, it is likely that Whittle's ~17) 
results for pseudomultigraphs on multiple-type vertices are asymptotic to this 
author's ~28) results on Branching Process models for multiple particle types. 

There are clearly many problems remaining open. 
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